"
DNA molecules cannot form by accident in nature ... nor anywhere else."
Well it is a good thing then that no one supposes that DNA molecules formed by accident then.
"
Scientifically, the conditions that are considered necessary to formulate the basic DNA of life for basic life forms would be fatal to current life forms. "
I'll use you favorite quote of mine here again.
Huh?
What conditions are those that would be fatal to all current life forms?
"
Hence, the quest for extraterrestrial life ..."
Very few people think that life on earth got started through pansperia. Most think that it got started right here.
Second, why is that even germane? No one supposes that the current life that we see just popped intoexistance for no reason. The earliest life would have by definition been suitable for the conditions then. As the earth changed, so did life.
"
So, according to modern "science" the basic premise of evolution is not logical. The assumption that life can be formed in conditions that are fatal to life is illogical."
First, it is your assertion so you have the burden of proof of showing thatthe conditions would be fatal. Second, abiogenesis, while an interesting and worthwhile topic, is a separate topic from evolution.
"
Further, the necessary assumption that life forms [species] can mutate into new life [new species] is also illogical. "Evolution" is merely natural selection and rendomness. There has never been any support for actual evolution."
How can something that is observed to happen be illogical? There is plenty of support for evolution. The twin nested heirarchy. Genetic vestiges. Developmental. Pseudogenes. Morphological vestiges. The unity of phylogenies from different sources. The known transistional series. The correct chronology of these series. Ontogeny. Biogeography. Molecular parahomology. Anatomical parahomology. Suboptimal function. Transposons. Retroviral inserts.
Just to name a few.
"
There has never been a single evolution of a new and observable "species"."
How many do you want?
"A Breed Apart," Scientific American", Feb 1989, page 22
In the early 20th century, three species of European wildflowers called goatsbeards were introduced into America. They caught on in the wild and started expanding their territory. Sometimes the three species would find themselves in mixed populations. Breeding between the three species produced offspring but the offspring were not fertile. In the 1940's, two new species of goatsbeards appeared in Washington state. Evolution had produced two new species from the hybrids that were now capable of reproducing with themselves but not with the three parent species from which they had evolved. The reason is partially because it was a polyploidy event.
We can go well down this path. We have plants. We have animals. We have speciation in the wild. We have speciation in the lab. We have speciation by various mechanisms. I don't know how many are here. Spend some time with
http://scholar.google.com/ and search on some of these and read them.
Bullini, L and Nascetti, G, 1991, Speciation by Hybridization in phasmids and other insects, Canadian Journal of Zoology, Volume 68(8), pages 1747-1760.
Sharman, G.B., Close, R.L, Maynes, G.M., 1991, Chromosome evolution, phylogeny, and speciation of rock wallabies, Australian Journal of Zoology, Volume 37(2-4), pages 351-363.
Werth, C. R., and Windham, M.D., 1991, A model for divergent, allopatric, speciation of polyploid pteridophytes resulting from silencing of duplicate- gene expression, AM-Natural, Volume 137(4):515-526.
Spooner, D.M., Sytsma, K.J., Smith, J., A Molecular reexamination of diploid hybrid speciation of Solanum raphanifolium, Evolution, Volume 45, Number 3, pages 757-764.
Arnold, M.L., Buckner, C.M., Robinson, J.J., 1991, Pollen-mediated introgression and hybrid speciation in Louisiana Irises, P-NAS-US, Volume 88, Number 4, pages 1398-1402.
Nevo, E., 1991, Evolutionary Theory and process of active speciation and adaptive radiation in subterranean mole rats, spalax-ehrenbergi superspecies, in Israel, Evolutionary Biology, Volume 25, pages 1-125.
Ahearn, J. N. 1980. Evolution of behavioral reproductive isolation in a laboratory stock of Drosophila silvestris. Experientia. 36:63-64.
Barton, N. H., J. S. Jones and J. Mallet. 1988. No barriers to speciation. Nature. 336:13-14.
Baum, D. 1992. Phylogenetic species concepts. Trends in Ecology and Evolution. 7:1-3.
Boraas, M. E. 1983. Predator induced evolution in chemostat culture. EOS. Transactions of the American Geophysical Union. 64:1102.
Breeuwer, J. A. J. and J. H. Werren. 1990. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 346:558-560.
Budd, A. F. and B. D. Mishler. 1990. Species and evolution in clonal organisms -- a summary and discussion. Systematic Botany 15:166-171.
Bullini, L. and G. Nascetti. 1990. Speciation by hybridization in phasmids and other insects. Canadian Journal of Zoology. 68:1747-1760.
Butters, F. K. 1941. Hybrid Woodsias in Minnesota. Amer. Fern. J. 31:15-21.
Butters, F. K. and R. M. Tryon, jr. 1948. A fertile mutant of a Woodsia hybrid. American Journal of Botany. 35:138.
Brock, T. D. and M. T. Madigan. 1988. Biology of Microorganisms (5th edition). Prentice Hall, Englewood, NJ.
Callaghan, C. A. 1987. Instances of observed speciation. The American Biology Teacher. 49:3436.
Castenholz, R. W. 1992. Species usage, concept, and evolution in the cyanobacteria (blue-green algae). Journal of Phycology 28:737-745.
Clausen, J., D. D. Keck and W. M. Hiesey. 1945. Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autoploidy, with examples from the Madiinae. Carnegie Institute Washington Publication, 564:1-174.
Cracraft, J. 1989. Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. In Otte, E. and J. A. Endler [eds.] Speciation and its consequences. Sinauer Associates, Sunderland, MA. pp. 28-59.
Craig, T. P., J. K. Itami, W. G. Abrahamson and J. D. Horner. 1993. Behavioral evidence for host-race fromation in Eurosta solidaginis. Evolution. 47:1696-1710.
Cronquist, A. 1978. Once again, what is a species? Biosystematics in agriculture. Beltsville Symposia in Agricultural Research 2:3-20.
Cronquist, A. 1988. The evolution and classification of flowering plants (2nd edition). The New York Botanical Garden, Bronx, NY.
Crossley, S. A. 1974. Changes in mating behavior produced by selection for ethological isolation between ebony and vestigial mutants of Drosophilia melanogaster. Evolution. 28:631-647.
de Oliveira, A. K. and A. R. Cordeiro. 1980. Adaptation of Drosophila willistoni experimental populations to extreme pH medium. II. Development of incipient reproductive isolation. Heredity. 44:123-130.
de Queiroz, K. and M. Donoghue. 1988. Phylogenetic systematics and the species problem. Cladistics. 4:317-338.
de Queiroz, K. and M. Donoghue. 1990. Phylogenetic systematics and species revisited. Cladistics. 6:83-90.
de Vries, H. 1905. Species and varieties, their origin by mutation.
de Wet, J. M. J. 1971. Polyploidy and evolution in plants. Taxon. 20:29-35.
del Solar, E. 1966. Sexual isolation caused by selection for positive and negative phototaxis and geotaxis in Drosophila pseudoobscura. Proceedings of the National Academy of Sciences (US). 56:484-487.
Digby, L. 1912. The cytology of Primula kewensis and of other related Primula hybrids. Ann. Bot. 26:357-388.
Dobzhansky, T. 1937. Genetics and the origin of species. Columbia University Press, New York.
Dobzhansky, T. 1951. Genetics and the origin of species (3rd edition). Columbia University Press, New York.
Dobzhansky, T. and O. Pavlovsky. 1971. Experimentally created incipient species of Drosophila. Nature. 230:289-292.
Dobzhansky, T. 1972. Species of Drosophila: new excitement in an old field. Science. 177:664-669.
Dodd, D. M. B. 1989. Reproductive isolation as a consequence of adaptive divergence in Drosophila melanogaster. Evolution 43:1308-1311.
Dodd, D. M. B. and J. R. Powell. 1985. Founder-flush speciation: an update of experimental results with Drosophila. Evolution 39:1388-1392.
Donoghue, M. J. 1985. A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist 88:172-181.
Du Rietz, G. E. 1930. The fundamental units of biological taxonomy. Svensk. Bot. Tidskr. 24:333-428.
Ehrman, E. 1971. Natural selection for the origin of reproductive isolation. The American Naturalist. 105:479-483.
Ehrman, E. 1973. More on natural selection for the origin of reproductive isolation. The American Naturalist. 107:318-319.
Feder, J. L., C. A. Chilcote and G. L. Bush. 1988. Genetic differentiation between sympatric host races of the apple maggot fly, Rhagoletis pomonella. Nature. 336:61-64.
Feder, J. L. and G. L. Bush. 1989. A field test of differential host-plant usage between two sibling species of Rhagoletis pomonella fruit flies (Diptera:Tephritidae) and its consequences for sympatric models of speciation. Evolution 43:1813-1819.
Frandsen, K. J. 1943. The experimental formation of Brassica juncea Czern. et Coss. Dansk. Bot. Arkiv., No. 4, 11:1-17.
Frandsen, K. J. 1947. The experimental formation of Brassica napus L. var. oleifera DC and Brassica carinata Braun. Dansk. Bot. Arkiv., No. 7, 12:1-16.
Galiana, A., A. Moya and F. J. Alaya. 1993. Founder-flush speciation in Drosophila pseudoobscura: a large scale experiment. Evolution. 47432-444.
Gottleib, L. D. 1973. Genetic differentiation, sympatric speciation, and the origin of a diploid species of Stephanomeira. American Journal of Botany. 60: 545-553.
Halliburton, R. and G. A. E. Gall. 1981. Disruptive selection and assortative mating in Tribolium castaneum. Evolution. 35:829-843.
Hurd, L. E., and R. M. Eisenberg. 1975. Divergent selection for geotactic response and evolution of reproductive isolation in sympatric and allopatric populations of houseflies. The American Naturalist. 109:353-358.
Karpchenko, G. D. 1927. Polyploid hybrids of Raphanus sativus L. X Brassica oleraceae L. Bull. Appl. Botany. 17:305-408.
Karpchenko, G. D. 1928. Polyploid hybrids of Raphanus sativus L. X Brassica oleraceae L. Z. Indukt. Abstami-a Verenbungsi. 48:1-85.
Kilias, G., S. N. Alahiotis and M. Delecanos. 1980. A multifactorial investigation of speciation theory using Drosophila melanogaster. Evolution. 34:730-737.
Knight, G. R., A. Robertson and C. H. Waddington. 1956. Selection for sexual isolation within a species. Evolution. 10:14-22.
Koopman, K. F. 1950. Natural selection for reproductive isolation between Drosophila pseudoobscura and Drosophila persimilis. Evolution. 4:135-148.
Lee, R. E. 1989. Phycology (2nd edition) Cambridge University Press, Cambridge, UK
Levin, D. A. 1979. The nature of plant species. Science 204:381-384.
Lokki, J. and A. Saura. 1980. Polyploidy in insect evolution. In: W. H. Lewis (ed.) Polyploidy: Biological Relevance. Plenum Press, New York.
Macnair, M. R. 1981. Tolerance of higher plants to toxic materials. In: J. A. Bishop and L. M. Cook (eds.). Genetic consequences of man made change. Pp.177-297. Academic Press, New York.
Macnair, M. R. and P. Christie. 1983. Reproductive isolation as a pleiotropic effect of copper tolerance in Mimulus guttatus. Heredity. 50:295-302.
Manhart, J. R. and R. M. McCourt. 1992. Molecular data and species concepts in the algae. Journal of Phycology. 28:730-737.
Mayr, E. 1942. Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New York.
Mayr, E. 1982. The growth of biological thought: diversity, evolution and inheritance. Harvard University Press, Cambridge, MA. McCourt, R. M. and R. W. Hoshaw. 1990. Noncorrespondence of breeding groups, morphology and monophyletic groups in Spirogyra (Zygnemataceae; Chlorophyta) and the application of species concepts. Systematic Botany. 15:69-78.
McPheron, B. A., D. C. Smith and S. H. Berlocher. 1988. Genetic differentiation between host races of Rhagoletis pomonella. Nature. 336:64-66.
Meffert, L. M. and E. H. Bryant. 1991. Mating propensity and courtship behavior in serially bottlenecked lines of the housefly. Evolution 45:293-306.
Mishler, B. D. 1985. The morphological, developmental and phylogenetic basis of species concepts in the bryophytes. Bryologist. 88:207-214.
Mishler, B. D. and M. J. Donoghue. 1982. Species concepts: a case for pluralism. Systematic Zoology. 31:491-503.
Muntzing, A. 1932. Cytogenetic investigations on the synthetic Galeopsis tetrahit. Hereditas. 16:105-154.
Nelson, G. 1989. Cladistics and evolutionary models. Cladistics. 5:275-289.
Newton, W. C. F. and C. Pellew. 1929. Primula kewensis and its derivatives. J. Genetics. 20:405-467.
Otte, E. and J. A. Endler (eds.). 1989. Speciation and its consequences. Sinauer Associates. Sunderland, MA.
Owenby, M. 1950. Natural hybridization and amphiploidy in the genus Tragopogon. Am. J. Bot. 37:487-499.
Pasterniani, E. 1969. Selection for reproductive isolation between two populations of maize, Zea mays L. Evolution. 23:534-547.
Powell, J. R. 1978. The founder-flush speciation theory: an experimental approach. Evolution. 32:465-474.
Prokopy, R. J., S. R. Diehl, and S. H. Cooley. 1988. Oecologia. 76:138.
Rabe, E. W. and C. H. Haufler. 1992. Incipient polyploid speciation in the maidenhair fern (Adiantum pedatum, adiantaceae)? American Journal of Botany. 79:701-707.
Rice, W. R. 1985. Disruptive selection on habitat preference and the evolution of reproductive isolation: an exploratory experiment. Evolution. 39:645-646.
Rice, W. R. and E. E. Hostert. 1993. Laboratory experiments on speciation: What have we learned in forty years? Evolution. 47:1637-1653.
Rice, W. R. and G. W. Salt. 1988. Speciation via disruptive selection on habitat preference: experimental evidence. The American Naturalist. 131:911-917.
Rice, W. R. and G. W. Salt. 1990. The evolution of reproductive isolation as a correlated character under sympatric conditions: experimental evidence. Evolution. 44:1140-1152.
Ringo, J., D. Wood, R. Rockwell, and H. Dowse. 1989. An experiment testing two hypotheses of speciation. The American Naturalist. 126:642-661.
Schluter, D. and L. M. Nagel. 1995. Parallel speciation by natural selection. American Naturalist. 146:292-301.
Shikano, S., L. S. Luckinbill and Y. Kurihara. 1990. Changes of traits in a bacterial population associated with protozoal predation. Microbial Ecology. 20:75-84.
Smith, D. C. 1988. Heritable divergence of Rhagoletis pomonella host races by seasonal asynchrony. Nature. 336:66-67.
Soans, A. B., D. Pimentel and J. S. Soans. 1974. Evolution of reproductive isolation in allopatric and sympatric populations. The American Naturalist. 108:117-124.
Sokal, R. R. and T. J. Crovello. 1970. The biological species concept: a critical evaluation. The American Naturalist. 104:127-153.
Soltis, D. E. and P. S. Soltis. 1989. Allopolyploid speciation in Tragopogon: Insights from chloroplast DNA. American Journal of Botany. 76:1119-1124.
Stuessy, T. F. 1990. Plant taxonomy. Columbia University Press, New York.
Thoday, J. M. and J. B. Gibson. 1962. Isolation by disruptive selection. Nature. 193:1164-1166.
Thoday, J. M. and J. B. Gibson. 1970. The probability of isolation by disruptive selection. The American Naturalist. 104:219-230.
Thompson, J. N. 1987. Symbiont-induced speciation. Biological Journal of the Linnean Society. 32:385-393.
Vrijenhoek, R. C. 1994. Unisexual fish: Model systems for studying ecology and evolution. Annual Review of Ecology and Systematics. 25:71-96.
Waring, G. L., W. G. Abrahamson and D. J. Howard. 1990. Genetic differentiation in the gall former Eurosta solidaginis (Diptera:Tephritidae) along host plant lines. Evolution. 44:1648-1655.
Weinberg, J. R., V. R. Starczak and P. Jora. 1992. Evidence for rapid speciation following a founder event in the laboratory. Evolution. 46:1214-1220.
Wood, A. M. and T. Leatham. 1992. The species concept in phytoplankton ecology. Journal of Phycology. 28:723-729.
Yen, J. H. and A. R. Barr. 1971. New hypotheses of the cause of cytoplasmic incompatability in Culex pipiens L.